The Science of Alopecia X: ## Shedding the Myths Ph.D. (Biochemistry) B.Sc. (Hons. Biochemistry) TinyBear Pomeranians CKC Registered paul@tinybearpoms.com Dogs may experience temporary partial coat loss as a result of normal shedding periods, infection, parasite infestation, allergic reactions, hormonal or other environmental causes including poor nutrition or a variety of underlying health concerns (1, 2). There are also variants of 'normal' near or complete lack of coat in such breeds as the Chinese Crested, which is hairless on the trunk of the body but possesses long hair on the legs, tail and head in its hairless variety. A long, thick covering of hair on the entire body is characteristic of the coated variety. Conversely Poodles and many breeds double-coated Nordic including Keeshounds, the Chow Chow, Elkhound, Pomeranian and others may suffer a symmetric bilateral coat loss phenotype affecting primarily the neck, trunk and tail (Figure 1), of unknown etiology, variable time of onset ranging from 9 months to >10 years that while may be punctuated by periods of re-growth, generally is permanent without intervention. This condition has been described by a variety of names, including growth hormone responsive alopecia, castration responsive alopecia, post-clipping alopecia, follicular dysplasia, adrenal hyperplasia-like syndrome, pseudo-Cushing's syndrome, black skin disease (BSD) or others (1-3). Alopecia X is a term that has been coined to emphasize that the cause is unknown and this "disease" may in fact be the result of a variety of causes and conditions rather than being a single, well defined syndrome. Alopecia X typically presents as an apparent defect in the hair follicle cycle not caused by hypercortisolemia typical of Cushing's syndrome, or by hypothyroidism. The normal hair follicle cycle consists of three distinct phases of variable length. Anagen is the phase of active growth of the hair strand, telogen is a resting phase associated with a lack of significant hair lengthening, and categon involves changes to transition from the anagen growth phase to the quiescent telogen phase (1, 4). In dogs of defined coat length (dogs that do not grow hair requiring regular trimming), the coat will be in prolonged periods of the quiescent telogen phase for months or longer without new hair growth being initiated. Typically the telogen hairs are healthy and well-anchored, and thus dogs in telogen phase are properly and fully coated. quality of the undercoat. A specimen that appears to possess primarily a softer coat does not in itself indicate a dog progressing to alopecic hairless-Additionally, ness. many dogs are excessively trimmed and sculpted for aesthetic reasons. This trimming generally cuts more of the outer guard hairs and may give a similar appearance to the loss guard hairs. As the condition progresses, the specimen in the harshness of the outer coat and the tus to report problems is likely greater than to report Figure 1. A) Pomeranian before coat loss due to Alopecia X. B) Same Pomeranian after Alopecic loss of coat. Note the pattern of hair loss across the body with retained coat on the head and legs. Photo courtesy of Brigitte Sovonja ©2012 http://alopezie.pomeranianzwergspitz.de used with permission. soft undercoat is continually lost on the main trunk of 20 years ago. Long-time breeders whose lines are afto the common description of "Black Skin Disease". #### Cause of Alopecia X There are few sources of data concerning the occurrence of Alopecia X in the Pomeranian, or data that There have been many theories—some reasonable and www.offa.org/surveys/ survey pom.html May 14, 2012]), roughly 16% of dogs entered suffer In alopecic Pomeranians, the hair cycle is thought to Alopecia, with an equal proportion of males and fehave a defect in which it becomes arrested in the te-males over five years of age suffering Alopecia, logenic phase where new hair growth is unable to ini- though a higher incidence of males than females under tiate. Hair loss typically begins by age 1.5-3 years, two years and between two and five years of age apthough its onset is variable may occur earlier or much pear to display the characteristic hair loss. This is in later in life. Generally the outer guard hairs are lost agreement with the belief that the incidence is typifirst, leaving the soft undercoat and giving the appear- cally higher in males. However these results may or ance of a fluffy puppy coat (2). It should be noted that may not all be true cases of Alopecia X as they are while the breed standard indicates that an ideal Pom-simply unconfirmed and self-reported. Additionally, a eranian should possess a harsh outer coat with a soft self-reported health survey may be anticipated to emundercoat, some variation exists from specimen to phasize Pomeranians with health issues, as the impe- > the lack of a health concern. Reporting by our breeders of the health status of all dogs owned or produced (alive or deceased, healthy or otherwise) in this survey would help to provide an accurate picture of the health of our breed, both from an Alopecia X perspective and otherwise, though such alone would not give indication whether the incidence is increasing versus the body, the neck and often the tail, without signifi- fected by Alopecia X and who force their lines further cant re-growth. The final result is a dog that generally and further inbred over time will undoubtedly claim appears normally coated in the head, all four legs and that the rate of "BSD" is increasing, because it will do occasionally the tail, but is completely bald or simply so in the highly inbred dogs they continue to produce. possesses fine wisps of diffuse hair on the trunk of the This is unless perhaps after they have made a conbody (Figure 1). The exposure of the skin to the sun scious effort to eliminate it by ending breedings to can result in damage and hyper-pigmentation, leading dogs known to produce Alopecic dogs and to breed their lines to outside dogs thought not to be "carriers" and where the incidence in the general population that they begin breeding to is somewhat lower than their "BSD"-producing lines. indicate whether the incidence is increasing (anecdotal others outrageous—concerning the cause of Alopecia accounts aside), decreasing or remaining steady. Ac- X. There have been suggestions that poor food qualcording to self-reported survey results (http:// ity and vaccinations, toxins in the environment or researchers suspect that there is a strong genetic com- such a theory. ponent to the disease (1, 4, 6-9), for a variety of reasons, including: 1) there appear to be "carriers" who Alopecia X: a genetic disease—? are not affected but frequently produce offspring that genetic defect. breed as it would for wild animals such as a wolves or covotes fending for themselves. Our artificial selec- Taking these and other data into account, it is likely other factors are the culprit (5). Most breeders and controlled scientific study may support or disprove are affected and other dogs who are "not carriers" and Examination of pedigrees of affected dogs shows how never produce it; and 2) some dogs are affected while difficult it is to make solid conclusions about a causaothers raised in the same environment, exposed to the tive gene. The status of some dogs is unknown, age of same food, medications and other conditions do not, onset is variable and occasionally late in life, and a It is suspected that there may be a genetic defect in reluctance to disclose the status of dogs for fear of beone of many components of the normal hair cycle that ing attacked or ostracized by fellow breeders means at some point arrests the process in the telogenic that there are usually gaps in the record or direct misphase. Normal hair growth can occur in Alopecic information. However, Alopecia X does not appear to poms or these dogs would be born bald and remain so be a dominant characteristic, as a dominant trait in an throughout their lives. However, at some point this offspring will appear somewhere in each generation growth is arrested. Alopecia X appears to be influbehind it, but need only appear in one parent (Figure enced by hormonal signals, and hormones are inti- 2). There are many examples of seemingly unaffected mately involved in the control of the hair follicle cycle dogs producing affected offspring which is inconsis-(1, 3, 4, 6, 7, 10). Cascades of hormonal signals vary tent with a dominant, full penetrance trait. Some have through the life cycle of all mammals, including the suggested that Alopecia X is an X-linked recessive Pomeranian. Castration and treatments with mela-trait due to the higher incidence in male offspring than tonin or a variety of hormones has produced tempo- female offspring. Each male possesses a single X rary or apparently permanent coat re-growth in some chromosome while each female possesses two. A specimens (1, 3), and the internet is littered with falla- male will be affected if their single copy of such a cious "BSD cure regimens" or reports of secret formu- gene were to be defective. The dog could not be an las to restore coats. However, the condition is highly unaffected carrier. A female would only be affected if variable in the age of onset, the response to castration it received a defective copy from each parent but if and such re-growth regimens, suggesting that the dis- one parent had the defective trait, the female could be ease may not be due solely to a single full penetrance an unaffected carrier producing both affected male and carrier female progeny. There appear to be unaffected male carriers of the disease which is inconsis-Natural selection essentially no longer exists in the tent with an X-linked recessive trait (Figure 2). tion of the dogs that will produce the next generation that Alopecia X is in fact 1) a genetic disease due to a could in fact contribute to the incidence of Alopecia defect in the gene for one single protein product in-X. Some may suggest that dogs are "carriers" of the volved in the hair follicle cycle (1, 4) or an associated disease or in fact sufferers before full onset may pos- hormone signaling pathway (4, 6, 7), with some gesess particular attractive attributes, such as fuller coats netic or environmental influence to account for the that we desire in show specimens and thus we could varied age of onset and response to therapy, or 2) that unknowingly be selecting the Alopecic dogs to breed. it is a genetic disease and the variability is due to the There has been no scientifically sound, statistically interplay of multiple genetic defects in one or more of significant data to support or disprove said theory. several associated genes which occur in any one dog Any anecdotal information that indicates a direct link to produce the disease and the variability observed. If of Alopecia X to specific coat development character- 1) is the cause of the disease, the variable age of onset istics and progression that has been deduced in a sin- and response could be due to hormonal signals related gle, highly inbred population where a multitude of ge- to some unknown external environmental factor. netic factors unassociated with Alopecia X would be Equally likely, the genetic makeup of the dog may fixed, would likely not hold statistical relevance to the influence the progression of Alopecia X due to unbroader, diverse Pomeranian population. A properly known gene modifiers. Cystic Fibrosis is the most common genetic disease in humans (reviewed in (11)). It results from a mutation in a single gene that is inherited in a recessive manner and is entirely the cause of the disease (12). The mutation produces a defect in lung hydration that results in lung infection, damage, and ultimately death. However disease progression and severity vary from pato patient, tient among those suffering an identical mutation. In addition to differing environmental factors, including quality of treatment, variations in other genes in the patient have been identified by genome association -wide studies and appear to influence to some extent how the dis- ease progresses (13). All patients, if left untreated, will suffer lung damage and ultimately death, but this complement of other genes has a significant influence on how quickly the disease advances. Alopecia X onset and progression may occur analogously, being caused by a single recessive genetic change but modified by the genetic complement in each particular dog. Related dogs would likely progress similarly while unrelated Alopecic dogs would be expected to progress differently, such as with a different age of onset or response to castration. #### Efforts to identify a defective gene in Alopecia X To date there has been considerable research effort in the study of the genetic cause of Alopecia X. In an attempt to identify the associated gene, and for a lack Figure 2. Potential modes of inheritance of a defective Alopecia X gene. Under situations where a gene of interest follows a dominant pattern of inheritance, each affected offspring receives a copy of the gene from an affected parent. Affected dogs do not skip a generation. In a recessive inheritance pattern, either the mother or father can be affected or a carrier. Note that the parents of an affected dog are either carriers or affected, but in some generations there may be carriers who show no signs of the disease. In Xlinked recessive inheritance, the gene is present on the X chromosome. Male dogs only have one X chromosome inherited from the mother. Therefore a male cannot inherit the disease from the father, but can by a carrier mother and will always inherit it from an affected mother. There are no male carriers, only female carriers and affected males and females, but affected males are far more common. The inheritance pattern of Alopecia X appears to be most like a recessive (non-X-linked) gene. linked gene that produces hairlessness in any dog that inherits a single copy from either parent, but the disease is lethal in the embryonic stage for dogs inheriting the trait from both parents. Hairless Chinese Crested dogs are born lacking hair in their typical hairless regions rather than losing hair at a later time. The Leeb group (14) used a technique called genomewide association mapping to identify a short duplicated region in the sequence in hairless dogs of a gene called FOXI3, which is thought to be involved in regulating development. The duplicated sequence likely disrupts the gene and alters hair and tooth development. The characteristics of hairlessness in the Chinese Crested clearly differ significantly from Alopecia X of the Pomeranian. However, the same research group is currently conducting studies to identify the Alopecia X defect using similar techniques. defect. conditions for and defects of the teeth. This condition meaning that it is caused by a defect in single is a autosomal dominant earlier their (CED), monogenic, semi- trait. non-X- from the elimination of the Ptch2 gene. Mausberg et dropped from billions to little more than \$ 1000 in the of other breeds. They found that there was no mutability. tion in the gene that was associated with the affected Pomeranians. #### Alopecia X in the molecular era ered to independently assort from a parent to their off- cific breeds unaffected by Alopecia X. This will highrectly related to the disease, it could be used as a start- or genes involved in the hair follicle cycle. ing point to search for the gene. Researchers can begin sequencing the DNA in the region near to the ge- The next step would be to focus on our best-guess gecauses of a variety of diseases in humans in the past. patients affected by a genetic disease and comparison tests exist for a host of genetic diseases in dogs and Mouse models exist for Alopecia where there is a lack cause of a disease. The gene defective in CF was of the gene Ctsl. These mice lose their coats around identified by an exhaustive search over a decade bethe age of sexual maturity, which is similar to the age fore the genome was fully sequenced (12). Modifier of coat loss in at least some Alopecic Pomeranians. genes for the disease, however, are easily being identi-The Leeb group (9) examined the Ctsl2 gene fied now by comparing the sequences in multiple pa-(equivalent of the Ctsl mouse gene) in Pomeranians tients and asking where there are common differences and found that this gene was not altered in Alopecic versus what is expected in the human genome using dogs versus control normally coated dogs, suggesting genome-wide association studies as described above that this is not the defective gene responsible for the (13). The cost to sequence the human exome: the disease. Another mouse model of Alopecia results complement of all of the genes in the genome, has al (8) examined this gene in normally coated and af- last several years, making routine genetic studies on fected Pomeranians as well as normally coated dogs individual human patients within the realm of possi- Sequencing is being done or has been done for a variety of animals. There is an aggregate genome sequence available for the dog, and it is possible to sequence the genome of the Pomeranian breed as well. Research is continuing by a few groups to identify the This effort requires funding contributed by the Pom-Alopecia X-associated gene. One method to identify eranian community, but not billions or millions of dolthe gene is to search for mutations in other genes, or lars as some claim, but likely thousands to tens-ofother genetic markers called SNPs (single nucleotide thousands of easily-achievable dollars. If the genome polymorphisms) that are passed from parent to off- of an Alopecic dog can be sequenced, it can be comspring in Alopecic dogs. Genes are generally consid-pared directly to the aggregate dog genome or to spespring. However if genes or SNPs are located close to light differences that make the Pomeranian unique and an Alopecia X-causing gene on a particular chromogive it its characteristic shape, size, and other features. some, there will be a greater likelihood that the ge- It is expected to also highlight any genetic changes netic marker will also be passed along to the off- that cause Alopecia X. Researchers won't be able to spring. If the location on the chromosome is known directly identify which changes are responsible for for such a genetic marker and it can be identified to be Alopecia X, but may be able to make educated associated with Alopecia X inheritance, while not di- guesses if changes occur in hormonal regulation genes netic marker and compare sequences for affected netic differences. Because the sequences in the area dogs, and normally coated dogs. Differences that are around the changes would be known, it would be an consistent between affected dogs but not observed in easy step to sequence these small regions in multiple normal dogs would be a good indication that this par- Alopecic and normally coated dogs. It should be ticular region is the one affected. This type of identi- straightforward to identify which changes are due to fication method has been used to identify the genetic Alopecia X. Alternately, we could sequence the entire genomes of other affected and non-affected dogs to see directly which changes are specific for Alopecia For human diseases, we have entered the molecular X. As the sequence would already be known, it would era of the study of genetics. After a 13 year, \$3 bil- be simple to develop a genetic test to differentiate belion effort, the entire human genome has been se- tween a normal gene and an Alopecia X gene. Such quenced. It is routine to sequence regions of DNA in simple and economical (typically \$ 50-75 per dog) to the known sequences in the database to identify the other species. This is the ultimate goal in the study of Alopecia X. #### Toward the future It is unlikely a "cure" will ever be developed for Alopecia X as the process of identifying a small molecule that can correct the defect and having that drug approved for use is literally a multi-billion dollar effort. There simply isn't sufficient pay-off for a drug company to engage in such an effort. If a drug used for another condition in dogs or humans were identified that showed efficacy in treating the defect, it could however be adopted for Alopecia X. probably, a genetic test will be the sole tool for our use to deal with the condition. It would allow us to know the status of all dogs before breeding and avoid matings that would produce bald dogs. Care would be needed in the use of the information from such a genetic test. The desire might be for the community to "eliminate" all affected AND carrier dogs from the breeding pool. This could devastate the breed, depending on the true prevalence in the Pomeranian population. We could lose entire unique lines and much of the diversity that keeps a breed healthy. The • loss of genetic diversity could in fact bring other genetic diseases into greater prevalence due to the limited remaining breeding stock, if one or a few possess a particular defect. There must be a concerted effort moving forward to protect genetic diversity in the breed and this should form the basis of policy at the breed club level. However, until an Alopecia X test is developed, the main concerns are 2 fold: 1) to understand how to proceed protecting the breed but producing as few bald dogs as possible, and 2) raising the funds as a community necessary to identify the gene and get the test developed that we so badly need. There are a few tenants that breeders concerned about Alopecia X may follow: - Try to be as aware as possible about the incidence of Alopecia X in the dogs in your pedigrees, and also in what they have produced in other breedings. This is not always an easy task. - Monitor closely your dogs to see if you can see - necessarily hold for other dogs from different lines. - Have your bald dogs properly diagnosed to eliminate other causes of hair loss. - Share information, but realize that what you see in your dogs may not be a universal trait and only a properly-controlled scientific study may tell us what characteristics are truly common before complete coat loss. - Try to minimize early breedings before Alopecia X would become apparent. - Do every breeding with a purpose, and be aware of the risks, not only for Alopecia X but other diseases as well. Does this breeding make more sense and produce less risk than another breeding? - Minimize the use of dogs suspected of being carriers and certainly those affected. - Inbreed and line breed carefully and with a purpose, being doubly sure of the risks versus benefits. - Use judicious breedings to outside dogs that you know haven't produced Alopecia X, particularly when you feel the incidence of Alopecia X in the general population is lower than what you are seeing in your lines. - Breeding to "unknown" outside dogs could be just as risky, or even more so than using a known suspect dog. Foreign dogs don't necessarily have a lower incidence—what you don't know can hurt - Donate information and time as well as DNA samples and pedigree information to legitimate scientific studies examining Alopecia X. - Preserve diversity in your lines and in the population. There are rare instances where certain groups of dogs could be lost by simply eliminating all suspected carriers of Alopecia X or other diseases from the breeding pool. This would be a greater disservice to the breed moving forward. Instead in these situations, do carefully controlled breedings to dogs that have never produced Alopecia X in many breedings over a number of years. any patterns that lead you to suspect dogs who will Finally, we as the Pomeranian community need to develop the disease. Such evidence would not raise funds to support the scientific research being done. We are at a point now where an Alopecia Xrelated gene likely can be identified at a lower cost than ever and a simple genetic test should be possible. 8 We all must contribute to the development of this vital tool. It is up to the members of the PCOC, APC, etc. to join together and raise the funds necessary to save our breed. If we don't care enough to do it, no one 9. else will. Last year 790 purebred Pomeranians were registered with the Canadian Kennel Club. I advocate making a donation for each Pomeranian produced or sold by each of our members to contribute to the genome sequencing effort or to Alopecia X research in general. Even a donation of 1% of the sale price of each dog sold will add up quickly. If the average dog is sold for just \$ 2000, that means a small contribution of \$ 20. But this adds up to \$ 16 000 from the registered dogs produced last year alone. However, not all dogs registered in Canada were produced by PCOC members and not all members will care enough to contribute, which is why we need to work extra hard and donate even more. With matching funds when we donate and our APC neighbours contributing as well, we can really raise the needed funds quickly. Many of the PCOC members have already donated and are continuing to do so. Whether you have or haven't donated in the past, please visit: http://www.american pomeranianclub.org/health.htm now and please donate! - 1. Frank LA (2007) Hair today, gone tomorrow! *PCOC Magazine* June 2007:38-39. - AltheaVetStaff (2006) Alopecia X. PCOC Magazine September 2006:28-29. - 3. Frank LA, Hnilica KA, Oliver JW (2004) Adrenal steroid hormone concentrations in dogs with hair cycle arrest (Alopecia X) before and during treatment with melatonin and mitotane. *Vet Dermatol* 15:278-284. - 4. Frank LA (2005) Growth hormone-responsive alopecia in dogs. *J Am Vet Med Assoc* 226:1494-1497. - 5. Stark R (2006) "The Disease", BSD, Alopecia X or whatever you want to call it. *PCOC Magazine* September 2006:30-33. - Frank LA (2007) Oestrogen receptor antagonist and hair regrowth in dogs with hair cycle arrest (alopecia X). Vet Dermatol 18:63-66. - Frank LA, Donnell RL, Kania SA (2006) Oestrogen receptor evaluation in Pomeranian dogs with hair cycle arrest - (alopecia X) on melatonin supplementation. *Vet Dermatol* 17:252-258. - 8. Mausberg EM, Drogemuller C, Dolf G, Rufenacht S, Welle M, et al. (2008) Exclusion of patched homolog 2 (PTCH2) as a candidate gene for alopecia X in Pomeranians and Keeshonden. *Vet Rec* 163:121-123. - 9. Mausberg EM, Drogemuller C, Leeb T, Dolf G, Rufenacht S, et al. (2007) Evaluation of the CTSL2 gene as a candidate gene for alopecia X in Pomeranians and Keeshonden. *Anim Biotechnol* 18:291-296. - Frank LA, Hnilica KA, Rohrbach BW, Oliver JW (2003) Retrospective evaluation of sex hormones and steroid hormone intermediates in dogs with alopecia. *Vet Dermatol* 14:91-97. - 11. Kim Chiaw P, Eckford PD, Bear CE Insights into the mechanisms underlying CFTR channel activity, the molecular basis for cystic fibrosis and strategies for therapy. *Essays Biochem* 50:233-248. - 12. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, et al. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. *Science* 245:1066-1073. - 13. Wright FA, Strug LJ, Doshi VK, Commander CW, Blackman SM, et al. Genome-wide association and linkage identify modifier loci of lung disease severity in cystic fibrosis at 11p13 and 20q13.2. *Nat Genet* 43:539-546. - 14. Drogemuller C, Karlsson EK, Hytonen MK, Perloski M, Dolf G, et al. (2008) A mutation in hairless dogs implicates FOXI3 in ectodermal development. *Science* 321:1462. If you are interested in a ### Reprint of this Article Please contact our Club Treasurer #### Renee Repka 111-1655 Grant Avenue Port Coquitlam, BC V3B 7V1 Telephone: 604.472.9666 Email: ren9666@shaw.ca #### Reprints are \$10 (includes S & H) Proceeds from reprint sales will go APC to support Alopecia X research.